iGuzzini

Last information update: May 2025

Product configuration: RA97

RA97: Minimal 9 cells - Flood beam - LED

59 [6]

RA97: Minimal 9 cells - Flood beam - LED

Technical description

Product code

Square miniaturised recessed luminaire with 9 optical elements for LED lamps - fixed optic. Despite the ultracompact size of the product, the patented technology of the optic system guarantees an efficient luminous flux and a high level of controlled glare visual comfort. Main body with die-cast aluminium radiant surface, minimal (frameless) version for mounting flush with the ceiling. For recessed installation in a false ceiling a specific adapter is required that is available with a separate item code. Metallised, thermoplastic, high definition Opti Beam reflector, integrated in a set-back position in the anti-glare screen. Supplied with a dimmable DALI power supply unit connected to the luminaire.

Installation

The luminaire is recessed in the specific adapter (QJ91) by means of a steel wire spring, previously installed on the ceiling that can be 12.5 / 15 / 20 mm thick. A special protective sheath allows finishing operations on the plasterboard to be simplified and speeded up.

Weight (Kg) 6)* 0.27

* Colours on request

Mounting wall recessed ceiling recessed

Wiring

On the power supply unit with terminal board included.

Notes

The special steel wire spring provided is required to facilitate the eventual extraction of the recessed body once it has been inserted.

 IP20
 IP23
 CE
 LK
 S
 S
 LE
 <thLe</thr>
 Le</thr>
 Le</thr>

Technical data			
Im system:	1245	Colour temperature [K]:	3500
W system:	17.7	MacAdam Step:	2
Im source:	1500	Life Time LED 1:	> 50,000h - L80 - B10 (Ta 25°C)
W source:	15	Voltage [Vin]:	230
Luminous efficiency (Im/W,	70.3	Lamp code:	LED
real value):		Number of lamps for optical	1
Im in emergency mode:	-	assembly:	
Total light flux at or above	0	ZVEI Code:	LED
an angle of 90° [Lm]:		Number of optical	1
Light Output Ratio (L.O.R.)	83	assemblies:	
[%]:		Control:	DALI-2
Beam angle [°]:	43°		
CRI (minimum):	90		

Polar

Imax=2557 cd CIE	Lux	
90° nL 0.83 180° 90° UGR <10-100-100-100-100-100-100-100-100-100-	83 h d Em Ema	x
DIN A.61	2 1.5 520 63	5
UTE 0.83A+0.00T F*1=999	4 3.1 130 15	9
2500 F*1+F*2=1000 F*1+F*3=1000 CIBSE	0 6 4.6 58 7	1
α=42°	² at 65° cd/mq @65° 8 6.1 33 4	0

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	75	71	68	66	70	68	68	65	78
1.0	78	75	72	70	74	72	71	69	83
1.5	82	80	77	76	79	77	76	74	89
2.0	85	83	81	80	82	80	79	77	93
2.5	86	85	84	83	84	83	82	79	96
3.0	87	86	85	85	85	84	83	81	98
4.0	88	87	87	86	86	86	84	82	99
5.0	89	88	88	88	87	87	85	83	100

Luminance curve limit

QC	Α	G 1.15	2000	1000	500		<-300		
	в	1.50		2000	1000	750	500	<=300	
	C	1.85			2000		1000	500	<-300
					~ ~	/	/ -		
85°									3
									- 6
75°									_ 4
	/								
6	/								
									2
65°									
								\downarrow	a
	1							$\rightarrow \square$	a
65° 55°	~							\mathbb{R}	a h
55°	~								'n
55°	0 ²	2	3 4 5	6 8 1	D3 :	2 3	4 5 6	8 10 ⁴	

UGR diagram

Rifle	ct ·										
ceil/cav		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30
walls		0.50	0.30	0.50	0.30	0.30	0.50	0.30	0.50	0.30	0.30
work pl.		0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Room dim		2201013		viewed			0.1330.000		viewed		
x y			0	crosswis	e	endwise					
2H	2H	6.8	7.3	7.0	7.6	7.8	6.8	7.3	7.0	7.6	7.8
	ЗH	6.6	7.1	6.9	7.4	7.7	6.6	7.1	6.9	7.4	7.7
	4H	6.6	7.0	6.9	7.3	7.6	6.5	7.0	6.9	7.3	7.6
	бH	6.5	6.9	6.8	7.2	7.6	6.5	6.9	6.8	7.2	7.6
	BH	6.4	6.9	6.8	7.2	7.5	6.4	6.9	6.8	7.2	7.5
	12H	6.4	8.0	6.8	7.2	7.5	6.4	6.8	6.8	7.1	7.5
4H	2H	6.5	7.0	6.9	7.3	7.6	6.6	7.0	6.9	7.3	7.6
	ЗH	6.4	6.8	6.8	7.1	7.5	6.4	6.8	6.8	7.1	7.5
	4H	6.3	6.7	6.7	7.0	7.4	6.3	6.7	6.7	7.0	7.4
	6H	6.2	6.5	6.7	6.9	7.4	6.2	6.5	6.6	6.9	7.4
	BH	6.2	6.5	6.6	6.9	7.3	6.2	6.5	6.6	6.9	7.3
	12H	6.1	6.4	6.6	6.8	7.3	6.1	6.4	6.6	6.8	7.3
вн	4H	6.2	6.5	6.6	6.9	7.3	6.2	6.5	6.6	6.9	7.3
	6H	6.1	6.3	6.6	6.8	7.3	6.1	6.3	6.6	6.8	7.3
	BH	6.0	6.3	6.5	6.7	7.2	6.0	6.3	6.5	6.7	7.2
	12H	6.0	6.2	6.5	6.7	7.2	6.0	6.2	6.5	6.7	7.2
12H	4H	6.1	6.4	6.6	6.8	7.3	6.1	6.4	6.6	6.8	7.3
	бH	6.0	6.2	6.5	6.7	7.2	6.1	6.3	6.5	6.7	7.2
	8H	6.0	6.2	6.5	6.7	7.2	6.0	6.2	6.5	6.7	7.2
Varia	ations wi	th the ol	pserverp	osition	at spacir	ng:					
S =	1.0H		7	.0 / -14	.5		7.0 / -14.5				
	1.5H	9.8 / -14.7					9.8 / -14.7				