Design iGuzzini iGuzzini

Last information update: December 2024

Product configuration: Q465

Q465: Frame 2 cells - Flood beam - LED

Q465: Frame 2 cells - Flood beam - LED

Technical description

Linear miniaturised recessed luminaire with 2 optical elements for LED lamps - fixed optics. Despite the ultracompact size of the product, the patented technology of the optic system guarantees an efficient flow and a high level of controlled glare visual comfort. Main body with die-cast zamak radiant surface, version with perimeter surface frame. Metallised, thermoplastic, high definition Opti Beam reflectors, integrated in a set-back position in the anti-glare screen. Ballast not included, available with separate code.

Installation

Recessed with steel wire springs for false ceilings from 1 to 25 mm thick - preparation hole 24 x 42.

Colour

White (01) | Black / Black (43) | Black / White (47) | White/Gold (41)* | Grey / Black (74)* | White / burnished chrome (E7)*

0.11

Weight (Kg)

* Colours on request

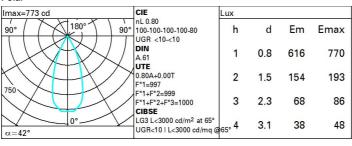
Mounting

wall recessed|ceiling recessed

Wiring

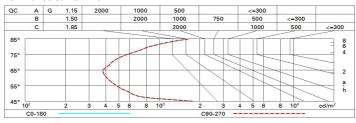
Direct current ballasts to be ordered separately: ON-OFF - code no. MXF9 (min 1 / max 4); dimmable DALI - code no. BZM4 (min 1 / max 10) - check the instruction sheet for the lengths and compatible cross-sections of the cables to be used.

Complies with EN60598-1 and pertinent regulations



Technical	data

Im system: 368 CRI (minimum): 90 W system: 4 Colour temperature [K]: 4000 460 MacAdam Step: Im source: > 50,000h - L80 - B10 (Ta 25°C) W source: Life Time LED 1: Luminous efficiency (lm/W, 92 Lamp code: real value): Number of lamps for optical Im in emergency mode: assembly: Total light flux at or above 0 ZVEI Code: LED an angle of 90° [Lm]: Number of optical Light Output Ratio (L.O.R.) assemblies: [%]: 700 LED current [mA]: Beam angle [°]: 42°


Polar

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	72	69	66	64	68	66	65	63	78
1.0	75	72	70	68	71	69	69	66	83
1.5	79	77	75	73	76	74	73	71	89
2.0	82	80	78	77	79	77	76	74	93
2.5	83	82	81	80	81	80	79	77	96
3.0	84	83	82	82	82	81	80	78	98
4.0	85	84	84	83	83	83	81	79	99
5.0	86	85	85	84	84	83	82	80	100

Luminance curve limit

Rifled				IIII Dale	lamp iu	mino us f	iux)				
Time	ct.:										
ceil/cav walls work pl. Room dim		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30
		0.50 0.20	0.30	0.50 0.20	0.30	0.30 0.20	0.50 0.20	0.30	0.50 0.20	0.30	0.30
								0.20			
		viewed					viewed				
х у		crosswise					endwise				
2H	2H	8.8	9.2	9.0	9.5	9.7	8.8	9.2	9.0	9.5	9.
	ЗН	8.6	9.1	8.9	9.3	9.6	8.6	9.1	8.9	9.3	9.
	4H	8.6	9.0	8.9	9.3	9.6	8.6	9.0	8.9	9.3	9.
	бН	8.5	8.9	8.9	9.2	9.5	8.5	8.9	8.8	9.2	9.
	HS	8.5	8.9	8.9	9.2	9.5	8.5	8.8	8.8	9.1	9.
	12H	8.5	8.8	8.9	9.2	9.5	8.4	8.8	8.8	9.1	9.
4H	2H	8.6	9.0	8.9	9.3	9.6	8.6	9.0	8.9	9.3	9.
	ЗН	8.4	8.8	8.8	9.1	9.5	8.4	8.8	8.8	9.1	9.
	4H	8.3	8.7	8.7	9.0	9.4	8.3	8.7	8.7	9.0	9.
	бН	8.3	8.6	8.7	9.0	9.4	8.3	8.5	8.7	8.9	9.
	HS	8.3	8.5	8.7	8.9	9.4	8.2	8.5	8.7	8.9	9.
	12H	8.3	8.5	8.7	8.9	9.4	8.2	8.4	8.6	8.8	9.
8Н	4H	8.2	8.5	8.7	8.9	9.3	8.3	8.5	8.7	8.9	9.
	бН	8.2	8.4	8.6	8.8	9.3	8.2	8.4	8.7	8.9	9.
	HS	8.2	8.3	8.7	8.8	9.3	8.2	8.3	8.7	8.8	9.
	12H	8.2	8.4	8.7	8.8	9.4	8.1	8.3	8.6	8.8	9.
12H	4H	8.2	8.4	8.6	8.8	9.3	8.3	8.5	8.7	8.9	9.
	бН	8.1	8.3	8.6	8.8	9.3	8.2	8.4	8.7	8.9	9.
	HS	8.1	8.3	8.6	8.8	9.3	8.2	8.4	8.7	8.8	9.
Varia	tions wi	th the ol	oserverp	osition a	at spacir	ıg:	-				
S =	1.0H		6	.7 / -8	9	6.7 / -8.9					
	1.5H	9.5 / -9.1					9.5 / -9.1				

Q465_EN 2 / 2