Product code

Technical description

iGuzzini

Last information update: February 2025

Product configuration: RF68.01

RF68.01: Pendant Tecnica Evo - Ø92 body - DALI - 27.5W 3357Im - 4000K - White

RF68.01: Pendant Tecnica Evo - Ø92 body - DALI - 27.5W 3357Im - 4000K - White

.0

Installation

Installation on an electrified track.

Colour White (01)

installation.

Wiring Built-in DALI dimmable power supply.

Weight (Kg)

1.46

Pendant luminaire fitted with an adapter for installation on an electrified DALI track. High yield LED lamp. Die-cast aluminium luminaire. Optical system with high performance P.V.D. (Physical Vapour Deposition) anti-scratch aluminium reflector that offers an excellent light efficiency ratio. Balanced pendant system with double steel cable and adjustment system. Fitted with mechanical aiming locks, so rotation and tilting movements can be locked in position to ensure efficient light aiming even after the original installation or during maintenance. Integrated DALI dimmable power supply unit. Designed to house other optical accessories in the range. Interchangeable reflectors are available, which allow the emission angle to be varied as required, even after the original

Technical data						
Im system:	3357	CRI (minimum):	80			
W system:	27.5	Colour temperature [K]:	4000			
Im source:	3730	MacAdam Step:	2			
W source:	24	Life Time LED 1:	> 50,000h - L90 - B10 (Ta 25°C)			
Luminous efficiency (Im/W,	122.1	Lamp code: LED				
real value):		Number of lamps for optical	1			
Im in emergency mode:	-	assembly:				
Total light flux at or above	0	ZVEI Code:	LED			
an angle of 90° [Lm]:		Number of optical	1			
Light Output Ratio (L.O.R.)	90	assemblies:				
[%]:		Control:	DALI-2			
Beam angle [°]:	17°					

Polar

lmax=20172 cd	C0-180		Lux				
90°	80° 90°	nL 0.90 100-100-100-100-90	h	d1	d2	Em	Emax
	$\langle \downarrow \rangle$	UGR <10-<10 DIN A.61	2	0.6	0.6	3944	5043
20000	\times $/$ \times	UTE 0.90A+0.00T F"1=999	4	1.2	1.3	986	1261
20000	X	F"1+F"2=1000 F"1+F"2+F"3=1000 CIBSE	6	1.8	1.9	438	560
α=17°		LG3 L<1500 cd/m² at 65° UGR<10 I L<1500 cd/mq @	65 ⁸	2.4	2.5	247	315

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	81	77	74	72	76	74	73	71	78
1.0	85	81	78	76	80	78	77	75	83
1.5	89	86	84	82	85	83	82	80	89
2.0	92	90	88	87	88	87	86	84	93
2.5	93	92	91	90	91	90	89	86	96
3.0	95	94	93	92	92	91	90	88	98
4.0	96	95	94	94	93	93	92	89	99
5.0	96	96	95	95	94	94	92	90	100

Luminance curve limit

QC	A	G	1.15	2000	1000	500		<-300		
	в		1.50		2000	1000	750	500	<-300	
	С		1.85			2000		1000	500	<=300
85°		_	-				h + r	$\int dt$		36
75°				-						4
65°	-			2-7-		-	\mathbb{N}			2
55°	-								\geq	a in
45°	10 ²		2	3 4 5	6 8 1	0 ³	2 3	4 5 6	8 10 ⁴	cd/m ²
	C0-18						C90-270 -			

UGR diagram

Rifle	et c										
ceil/cav		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30
	walls		0.30	0.50	0.30	0.30	0.50	0.30	0.50	0.30	0.30
work	pl.	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
	n dim	222020		viewed			0.1330.000		viewed		
x	У		0	crosswis	e				endwise		
2H	2H	5.5	7.6	5.8	7.9	8.2	5.2	7.4	5.6	7.7	8.0
	ЗH	5.3	6.9	5.7	7.3	7.6	5.1	6.7	5.5	7.0	7.4
	4H	5.3	6.6	5.6	6.9	7.3	5.0	6.4	5.4	6.7	7.0
	6H	5.2	6.3	5.6	6.6	6.9	5.0	6.0	5.4	6.4	6.7
	BH	5.2	6.2	5.6	6.6	6.9	4.9	6.0	5.3	6.3	6.7
	12H	5.1	6.2	5.5	6.5	6.9	4.9	5.9	5.3	6.3	6.7
4H	2H	5.3	6.6	5.6	6.9	7.3	5.0	6.4	5.4	6.7	7.0
	ЗH	5.1	6.2	5.5	6.5	6.9	4.9	5.9	5.3	6.3	6.7
	4H	5.0	6.0	5.4	6.4	6.9	4.7	5.8	5.2	6.2	6.6
	6H	4.6	6.3	5.1	6.8	7.3	4.4	6.1	4.9	6.6	7.0
	BH	4.5	6.4	5.0	6.9	7.4	4.3	6.2	4.8	6.6	7.1
	12H	4.4	6.4	4.9	6.8	7.4	4.2	6.1	4.7	6.6	7.1
вн	4H	4.5	6.4	5.0	6.9	7.4	4.3	6.2	4.8	6.6	7.
	6H	4.4	6.2	4.9	6.7	7.2	4.1	5.9	4.7	6.4	7.0
	8H	4.4	5.9	4.9	6.4	7.0	4.1	5.7	4.7	6.2	6.7
	12H	4.5	5.5	5.1	6.0	6.5	4.3	5.3	4.8	5.8	6.3
12H	4H	4.4	6.4	4.9	6.8	7.4	4.2	6.1	4.7	6.6	7.1
	бH	4.4	5.9	4.9	6.4	7.0	4.1	5.7	4.7	6.2	6.7
	H8	4.5	5.5	5.1	6.0	6.5	4.3	5.3	4.8	5.8	6.3
Varia	tions wi	th the ol	oserver p	osition	at spacir	ng:					
S =	1.0H		7	.1 / -17	.3	7.1 / -17.1					
	1.5H		10	.0 / -1	8.8	10.0 / -19.0					