Design Piano Design

iGuzzini

Last information update: May 2024

Product configuration: MQ02

MQ02: Large body spotlight - warm white - electronic ballast - wide flood optic

Product code

MQ02: Large body spotlight - warm white - electronic ballast - wide flood optic Attention! Code no longer in production

Technical description

Pendant luminaire equipped with a multiphase adapter made of die-cast aluminium and thermoplastic material. The pendant system consists of steel cables L=2000 that provide a simple mechanical anchoring system. Having been rotated and tilted, the luminaire can be locked mechanically in position to ensure efficient light aiming (even during maintenance operations). Luminaire for high output LED lamp with monochrome emission in a warm white colour tone (3000K). Electronic ballast. Equipped with an accessory holding ring designed to contain a flat accessory. Another external component can also be applied, selected from directional flaps and an asymmetric screen. All external accessories rotate 360° about the spotlight longitudinal axis.

Installation

Mounted on an electrified track with a multiphase adapter.

Colour

White (01) | Grey / Black (74)

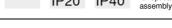
Mounting

ceiling pendant

Wiring

Electronic components housed in the luminaire.

Complies with EN60598-1 and pertinent regulations

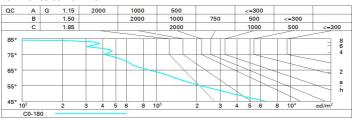


Technical data CRI (minimum): Im system: 3922 W system: 42 Colour temperature [K]: 5100 Im source: W source: 38 Luminous efficiency (lm/W, 93.4 real value): Im in emergency mode: Total light flux at or above an angle of 90° [Lm]: Light Output Ratio (L.O.R.) 77 assemblies: Beam angle [°]: 44°

MacAdam Step: 50,000h - L80 - B10 (Ta 25°C) Life Time LED 1: Lamp code: Number of lamps for optical assembly: ZVEI Code: LED Number of optical

80

3000


Polar

Imax=7802 cd CIE	Annual Control of the	Lux			
	00-100-100-77	h	d	Em	Emax
DIN A.6	1	2	1.6	1587	1950
F"1=	= A+0.00T =988	4	3.2	397	488
	+F"2=999 +F"2+F"3=1000	6	4.8	176	217
	L<1500 cd/m² at 65° R<10 L<1500 cd/mq @	₆₅ . 8	6.5	99	122

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	69	65	63	61	65	63	62	60	78
1.0	72	69	67	65	68	66	66	63	82
1.5	76	73	71	70	72	71	70	68	88
2.0	78	76	75	74	75	74	73	71	93
2.5	80	78	77	76	77	76	75	73	95
3.0	81	80	79	78	78	78	77	75	97
4.0	82	81	80	80	80	79	78	76	99
5.0	82	82	81	81	80	80	79	77	100

Luminance curve limit

Corre	cted UC	R values	s (at 510	0 lm bar	e lamp lu	eu oni mu	flux)				
Rifled	et.:										
ceil/cav		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30
walls work pl. Room dim		0.50	0.30	0.50 0.20	0.30	0.30	0.50 0.20	0.30 0.20	0.50 0.20	0.30	0.30
											0.20
		viewed					viewed				
х у		crosswise					endwise				
2H	2H	10.4	11.0	10.7	11.2	11.5	10.4	11.0	10.7	11.2	11.
	3H	10.3	10.8	10.6	11.1	11.4	10.3	10.8	10.6	11.1	11.
	4H	10.2	10.7	10.5	11.0	11.3	10.2	10.7	10.5	11.0	11.
	6Н	10.1	10.6	10.5	10.9	11.2	10.1	10.6	10.5	10.9	11.
	H8	10.1	10.5	10.5	10.9	11.2	10.1	10.5	10.5	10.9	11.
	12H	10.1	10.5	10.4	10.8	11.2	10.1	10.5	10.4	8.01	11.
4H	2H	10.2	10.7	10.5	11.0	11.3	10.2	10.7	10.5	11.0	11.
	3H	10.1	10.5	10.5	8.01	11.2	10.1	10.5	10.5	8.01	11.
	4H	10.0	10.4	10.4	10.7	11.1	10.0	10.4	10.4	10.7	11.
	6H	9.9	10.3	10.4	10.6	11.1	9.9	10.2	10.3	10.6	11.
	8H	9.9	10.2	10.3	10.6	11.0	9.9	10.2	10.3	10.6	11.
	12H	9.8	10.1	10.3	10.5	11.0	9.8	10.1	10.3	10.5	11.
вн	4H	9.9	10.2	10.3	10.6	11.0	9.9	10.2	10.3	10.6	11.
	6H	9.8	10.0	10.3	10.5	11.0	9.8	10.0	10.3	10.5	11.
	H8	9.7	10.0	10.2	10.4	10.9	9.7	10.0	10.2	10.4	10.
	12H	9.7	9.9	10.2	10.4	10.9	9.7	9.9	10.2	10.4	10.
12H	4H	8.9	10.1	10.3	10.5	11.0	8.9	10.1	10.3	10.5	11.
	бН	9.7	10.0	10.2	10.4	10.9	9.7	10.0	10.2	10.4	10.
	8H	9.7	9.9	10.2	10.4	10.9	9.7	9.9	10.2	10.4	10.
Varia	tions wi	th the ob	oserverp	noitieo	at spacin	g:					
S =	1.0H	5.4 / -8.9					5.4 / -8.9				
	1.5H	8.1 / -11.2					8.1 / -11.2				
	2.0H	10.1 / -12.7					10.1 / -12.7				

MQ02_EN 2 / 2