Design iGuzzini iGuzzini

Last information update: May 2025

Product configuration: Q507

Q507: Frame 10 cells - Wideflood beam - LED

Product code

Q507: Frame 10 cells - Wideflood beam - LED

Technical description

Linear miniaturised recessed luminaire with 10 optical elements for LED lamps - fixed optics. Despite the ultracompact size of the product, the patented technology of the optic system guarantees an efficient flow and a high level of controlled glare visual comfort. Main body with die-cast aluminium radiant surface, version with perimeter surface frame. Metallised, thermoplastic, high definition Opti Beam reflectors, integrated in a set-back position in the anti-glare screen. Supplied with DALI power supply unit connected to the luminaire.

Weight (Kg)

0.55

Installation

Recessed with steel wire springs for false ceilings from 1 to 25 mm thick - preparation hole 24 x 186.

Colour

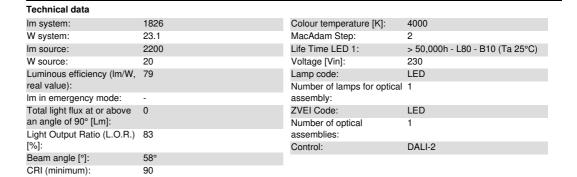
White (01) | Black / Black (43) | Black / White (47) | White/Gold (41)* | Grey / Black (74)* | White / burnished chrome (E7)*

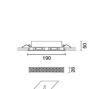
* Colours on request

wall recessed|ceiling recessed

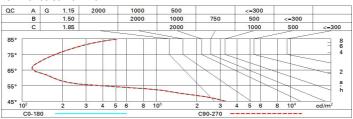
Wiring

On the power supply unit with terminal board included.





Polar


Imax=2327 cd		Lux			
90° / 180° / 90°	nL 0.83 100-100-100-100-83 UGR 17.0-17.0	h	d	Em	Emax
	DIN A.61	2	2.2	463	577
2500	UTE 0.83A+0.00T F"1=996	4	4.4	116	144
2500	F"1+F"2=1000 F"1+F"2+F"3=1000 CIBSE	6	6.7	51	64
α=58°	LG3 L<1500 cd/m² at 65° UGR<19 L<1500 cd/mq @	_{65°} 8	8.9	29	36

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	75	71	68	66	70	68	68	65	78
1.0	78	75	72	70	74	72	71	69	83
1.5	82	79	77	76	78	77	76	73	89
2.0	85	83	81	80	82	80	79	77	93
2.5	86	85	84	83	84	83	82	79	96
3.0	87	86	85	85	85	84	83	81	98
4.0	88	87	87	86	86	86	84	82	99
5.0	89	88	88	88	87	86	85	83	100

Luminance curve limit

Corre	ected UC	R value	s (at 220)	0 Im bare	e lamp lu	eu oni mu	flux)					
Rifle	ct.:											
ceil/cav walls work pl. Room dim x y		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30	
		0.50 0.20	0.30	0.50 0.20	0.30	0.30	0.50 0.20	0.30	0.50	0.30	0.30	
					0.20			0.20	0.20	0.20	0.20	
		viewed					viewed					
		crosswise					endwise					
2H	2H	17.6	18.0	17.9	18.3	18.5	17.6	18.0	17.9	18.3	18.	
	ЗН	17.5	17.9	17.8	18.1	18.4	17.5	17.9	17.8	18.1	18.	
	4H	17.4	17.8	17.7	18.1	18.4	17.4	17.8	17.7	18.1	18.	
	бН	17.3	17.7	17.7	18.0	18.3	17.3	17.7	17.7	18.0	18.	
	HS	17.3	17.6	17.6	17.9	18.3	17.3	17.6	17.6	17.9	18.	
	12H	17.2	17.6	17.6	17.9	18.3	17.2	17.6	17.6	17.9	18.	
4H	2H	17.4	17.8	17.7	18.1	18.4	17.4	17.8	17.7	18.1	18.	
	ЗН	17.2	17.6	17.6	17.9	18.2	17.2	17.6	17.6	17.9	18.	
	4H	17.1	17.4	17.5	17.8	18.2	17.1	17.4	17.5	17.8	18.	
	бН	17.1	17.3	17.5	17.7	18.1	17.1	17.3	17.5	17.7	18.	
	HS	17.0	17.2	17.4	17.7	18.1	17.0	17.2	17.4	17.7	18.	
	12H	17.0	17.2	17.4	17.6	18.1	17.0	17.2	17.4	17.6	18.	
ВН	4H	17.0	17.2	17.4	17.7	18.1	17.0	17.2	17.4	17.7	18.	
	6H	16.9	17.1	17.4	17.5	18.0	16.9	17.1	17.4	17.5	18.	
	HS	16.8	17.0	17.3	17.5	18.0	16.8	17.0	17.3	17.5	18.	
	12H	16.8	16.9	17.3	17.4	17.9	16.8	16.9	17.3	17.4	17.	
12H	4H	17.0	17.2	17.4	17.6	18.1	17.0	17.2	17.4	17.6	18.	
	бН	16.8	17.0	17.3	17.5	18.0	16.8	17.0	17.3	17.5	18.	
	HS	16.8	16.9	17.3	17.4	17.9	16.8	16.9	17.3	17.4	17.	
Varia	tions wi	th the ob	oserverp	noitieo	at spacin	g:						
S =	1.0H	6.5 / -24.9					6.5 / -24.9					
	1.5H	9.4 / -25.6					9.4 / -25.6					