Design iGuzzini

iGuzzini

Last information update: March 2025

Product configuration: Q935

Q935: Frame recessed luminaire - 5 cells - General Lighting Pro - DALI

Q935: Frame recessed luminaire - 5 cells - General Lighting Pro - DALI

Technical description

Rectangular recessed luminaire with 5 optical elements for LED lamps - fixed optics with metallised thermoplastic high definition Opti-Beam reflectors, integrated in a set-back position in the anti-glare screen. Main body with die-cast aluminium radiant surface, version with perimeter surface frame. The total white finish and the patented technology of the optic system guarantee an even and efficient luminous flux optimised by a special diffuser screen that reduces direct glare significantly. Supplied with DALI dimmable electronic control gear connected to the luminaire. High colour rendering LED.

Weight (Kg)

Installation Recessed with steel wire springs for false ceilings from 1 to 25 mm thick - preparation hole 37 x 141.

Colour

White (01)					0.3					
Mounting wall recessed ceiling	recessed									
Wiring On control gear box	with quick-co	oupling con	nections.			Co	mplies with	n EN60598-1	I and pertin	ent regulations
□ _{IP20}	IP23	C€	UK CA	Æ03	8	EAC	Q	NOM (3	Ŵ	S
PEP PCO PASS PORT=	pending									

Technical data					
Im system:	720	Life Time LED 1:	50,000h - L90 - B10 (Ta 25°C)		
W system:	13	Lamp code:	LED		
Im source:	1000	Number of lamps for optical	1		
W source:	10	assembly:			
Luminous efficiency (Im/W,	55.4	ZVEI Code:	LED		
real value):		Number of optical	1		
Im in emergency mode:	-	assemblies:			
Total light flux at or above	0	Power factor:	See installation instructions		
an angle of 90° [Lm]:		Inrush current:	20 A / 50 μs		
Light Output Ratio (L.O.R.)	72	Maximum number of			
[%]:		luminaires of this type per	B10A: 50 luminaires		
CRI (minimum):	95	miniature circuit breaker:	B16A: 80 luminaires		
CRI (typical):	97		C10A: 83 luminaires		
Colour temperature [K]:	4000		C16A: 136 luminaires		
MacAdam Step:	3	Minimum dimming %:	1		
		Overvoltage protection:	2kV Common mode & 2kV Differential mode		
		Control:	DALI-2		

Polar

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	61	57	54	52	56	53	53	50	70
1.0	65	61	58	56	60	57	57	54	75
1.5	69	66	64	62	65	63	62	60	83
2.0	72	69	68	66	68	67	66	64	88
2.5	73	72	70	69	70	69	68	66	92
3.0	74	73	72	71	72	71	70	68	94
4.0	75	74	74	73	73	72	71	69	96
5.0	76	75	74	74	74	73	72	70	97

Luminance curve limit

QC	Α	G	1.15	2000	1000	500		<-300		
	в		1.50		2000	1000	750	500	<=300	
	С		1.85			2000		1000	500	<=300
85° [$\left\{ \right\}$		TT				- 8
75°				ΥJ						4
65°					\rightarrow					2
									and the second se	
55°						\sim				a h
55° 45° 6		8	10 ³		2	3 4	5 6	8 10	4	

UGR diagram

Roon	€V	0.70										
walls work Roon			0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30	
work Roon		0.50	0.30	0.50	0.30	0.30	0.50	0.30	0.50	0.30	0.30	
Roon	work pl.		0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	
	Room dim			viewed					viewed			
x	У		c	rosswis	е				endwise			
2H	2H	18.3	19.0	18.6	19.2	19.5	18.3	19.0	18.6	19.2	19.5	
	3H	18.3	18.9	18.7	19.2	19.5	18.4	19.0	18.7	19.2	19.5	
	4H	18.4	18.9	18.7	19.2	19.5	18.3	18.9	18.6	19.2	19.5	
	6H	18.4	18.9	18.7	19.2	19.5	18.2	18.8	18.6	19.1	19.4	
	BH	18.4	18.9	18.7	19.2	19.6	18.2	18.7	18.6	19.1	19.	
	12H	18.4	18.9	18.7	19.2	19.5	18.2	18.7	18.6	19.0	19.4	
4H	2H	18.3	18.9	18.6	19.2	19.5	18.4	18.9	18.7	19.2	19.	
	ЗH	18.4	18.9	18.8	19.2	19.6	18.5	18.9	18.8	19.3	19.0	
	4H	18.5	18.9	18.9	19.2	19.6	18.5	18.9	18.9	19.2	19.	
	6H	18.5	18.9	18.9	19.3	19.7	18.4	18.8	18.9	19.2	19.	
	BH	18.5	18.9	19.0	19.3	19.7	18.4	18.7	18.8	19.2	19.	
	12H	18.5	18.9	19.0	19.3	19.7	18.4	18.7	18.8	19.1	19.	
вн	4H	18.4	18.7	18.8	19.2	19.6	18.5	18.9	19.0	19.3	19.	
	6H	18.5	18.8	19.0	19.2	19.7	18.6	18.8	19.0	19.3	19.	
	HS	18.6	18.8	19.1	19.3	19.8	18.6	18.8	19.1	19.3	19.8	
	12H	18.6	18.8	19.1	19.3	19.8	18.6	18.8	19.1	19.3	19.1	
12H	4H	18.4	18.7	18.8	19.1	19.6	18.5	18.9	19.0	19.3	19.	
	бH	18.5	18.7	19.0	19.2	19.7	18.6	18.8	19.1	19.3	19.8	
	HS	18.6	18.8	<mark>19.1</mark>	19.3	19.8	18.6	18.8	19.1	19.3	19.8	
Varia	tions wi	th the ot	oserver p	osition	at spacin	g:						
S =	1.0H		1	.5 / -1.	5			1	.5 / -1.	5		
	1.5H	3.1 / -3.4						3.1 / -3.4				