Design iGuzzini iGuzzini

Last information update: December 2024

Product configuration: QI92

QI92: Minimal 3 cells - Flood beam - LED

Product code

QI92: Minimal 3 cells - Flood beam - LED

Technical description

Linear miniaturised recessed luminaire with 3 optical elements for LED lamps - fixed optic. Despite the ultracompact size of the product, the patented technology of the optic system guarantees an efficient luminous flux and a high level of controlled glare visual comfort. Main body with die-cast zamak radiant surface, minimal (frameless) version for mounting flush with the ceiling. For recessed installation in a false ceiling a specific adapter is required that is available with a separate item code. Metallised, thermoplastic, high definition Opti Beam reflector, integrated in a set-back position in the anti-glare screen. Ballast not included, available with separate code.

Installation

The luminaire is recessed in the specific adapter (QJ88) by means of a steel wire spring, previously installed on the ceiling that can be 12.5 / 15 / 20 mm thick. A special protective sheath allows finishing operations on the plasterboard to be simplified and speeded up.

EME IS

Colour

White (01) | Black (04) | Gold (14)* | Burnished chrome (E6)*

Weight (Kg)

0.1

* Colours on request

Mounting

wall recessed|ceiling recessed

Wiring

Constant current ballasts to be ordered separately: ON-OFF - code no. MXF9 (min 1 / max 2); dimmable DALI - code no. BZM4 (min 1 / max 6) - check the instruction sheet for the lengths and compatible cross-sections of the cables to be used.

Notes

The special steel wire spring provided is required to facilitate the eventual extraction of the recessed body once it has been inserted.

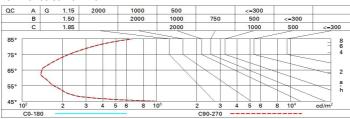
EAC

Complies with EN60598-1 and pertinent regulations

IP20

Technical data

lm system:	564	CRI (minimum):	90
W system:	6	Colour temperature [K]:	4000
Im source:	680	MacAdam Step:	2
W source:	6	Life Time LED 1:	> 50,000h - L80 - B10 (Ta 25°C)
Luminous efficiency (lm/W,	94.1	Lamp code:	LED
real value):		Number of lamps for optical	1
Im in emergency mode:	-	assembly:	
Total light flux at or above	0	ZVEI Code:	LED
an angle of 90° [Lm]:		Number of optical	1
Light Output Ratio (L.O.R.)	83	assemblies:	
[%]:		LED current [mA]:	700
Beam angle [°]:	43°		


Polar

Imax=1159 cd CI	The second secon	Lux			
90° 10	L 0.83 00-100-100-100-83	h	d	Em	Emax
DI		1	8.0	944	1151
0.8	TE 83A+0.00T "1=999	2	1.5	236	288
F"	"1+F"2=1000 "1+F"2+F"3=1000 IBSE	3	2.3	105	128
00 / 10	G3 L<1500 cd/m² at 65° GR<10 L<1500 cd/mq @	_{65°} 4	3.1	59	72

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	75	71	68	66	70	68	68	65	78
1.0	78	75	72	70	74	72	71	69	83
1.5	82	80	77	76	79	77	76	74	89
2.0	85	83	81	80	82	80	79	77	93
2.5	86	85	84	83	84	83	82	79	96
3.0	87	86	85	85	85	84	83	81	98
4.0	88	87	87	86	86	86	84	82	99
5.0	89	88	88	88	87	87	85	83	100

Luminance curve limit

Corre	ected UC	R value:	9 (at 680	Im bare	lamp lu	mino us f	lux)				
Rifle	ct.:										
ceil/c	av	0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30
walls		0.50	0.30	0.50	0.30	0.30	0.50	0.30	0.50	0.30	0.3
work pl.		0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.2
Roon	n dim	5353555		viewed			0.00000		viewed		
X	У	crosswise					endwise				
2H	2H	0.8	8.4	8.2	8.7	8.9	0.8	8.4	8.2	8.7	8.
	ЗН	7.8	8.3	8.2	8.5	8.8	7.8	8.3	8.1	8.5	8.
	4H	7.8	8.2	8.1	8.5	8.8	7.8	8.2	8.1	8.5	8.
	бН	7.7	8.1	0.8	8.4	8.7	7.7	8.1	0.8	8.4	8.
	HS	7.7	0.8	8.0	8.4	8.7	7.7	8.0	0.8	8.3	8.
	12H	7.6	0.8	0.8	8.3	8.7	7.6	0.8	0.8	8.3	8.
4H	2H	7.8	8.2	8.1	8.5	8.8	7.8	8.2	8.1	8.5	8.
	ЗН	7.6	0.8	0.8	8.3	8.7	7.6	0.8	0.8	8.3	8.
	4H	7.5	7.8	7.9	8.2	8.6	7.5	7.8	7.9	8.2	8.
	бН	7.5	7.7	7.9	8.1	8.5	7.4	7.7	7.9	8.1	8.
	HS	7.4	7.7	7.8	8.1	8.5	7.4	7.6	7.8	8.1	8.
	12H	7.4	7.6	7.8	0.8	8.5	7.3	7.6	7.8	0.8	8.
нв	4H	7.4	7.6	7.8	8.1	8.5	7.4	7.7	7.8	8.1	8.
	бН	7.3	7.5	7.8	0.8	8.4	7.3	7.5	7.8	0.8	8.
	HS	7.3	7.4	7.7	7.9	8.4	7.3	7.4	7.7	7.9	8.
	12H	7.2	7.4	7.7	7.9	8.4	7.2	7.4	7.7	7.9	8.
12H	4H	7.3	7.6	7.8	0.8	8.5	7.4	7.6	7.8	0.8	8.
	бН	7.3	7.4	7.7	7.9	8.4	7.3	7.4	7.8	7.9	8.
	H8	7.2	7.4	7.7	7.9	8.4	7.2	7.4	7.7	7.9	8.
Varia	tions wi	th the ol	bserverp	noitieo	at spacir	ıg:					
S =	1.0H	7.0 / -14.5					7.0 / -14.5				
	1.5H	9.8 / -14.7					9.8 / -14.7				